Human amplification of secondary earthquake hazards through environmental modifications
Daniell, J. E., Schaefer, A. M. & Wenzel, F. Losses associated with secondary effects in earthquakes. Front. Built Environ. 3, 30 (2017).
Google Scholar
Telford, J. & Cosgrave, J. Joint Evaluation of the International Response to the Indian Ocean Tsunami: Synthesis Report (Tsunami Evaluation Coalition, 2006).
Frankenberg, E., Gillespie, T., Preston, S., Sikoki, B. & Thomas, D. Mortality, the family and the Indian Ocean tsunami. Econ. J. 121, F162–F182 (2011).
Google Scholar
Kajitani, Y., Chang, S. E. & Tatano, H. Economic impacts of the 2011 Tohoku-Oki earthquake and tsunami. Earthq. Spectra 29, 457–478 (2013).
Google Scholar
Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501 (2021).
Google Scholar
Tarolli, P. & Sofia, G. Human topographic signatures and derived geomorphic processes across landscapes. Geomorphology 255, 140–161 (2016).
Google Scholar
Gill, J. C. & Malamud, B. D. Hazard interactions and interaction networks (cascades) within multi-hazard methodologies. Earth Syst. Dyn. 7, 659–679 (2016).
Google Scholar
Gill, J. C. & Malamud, B. D. Anthropogenic processes, natural hazards, and interactions in a multi-hazard framework. Earth-Sci. Rev. 166, 246–269 (2017).
Google Scholar
Sidle, R. C. & Ochiai, H. Landslides: Processes, Prediction, and Land Use (American Geophysical Union, 2006).
Barnard, P. L., Owen, L. A., Sharma, M. C. & Finkel, R. C. Natural and human-induced landsliding in the Garhwal Himalaya of northern India. Geomorphology 40, 21–35 (2001).
Google Scholar
Brenning, A., Schwinn, M., Ruiz-Páez, A. P. & Muenchow, J. Landslide susceptibility near highways is increased by 1 order of magnitude in the Andes of southern Ecuador, Loja province. Nat. Hazards Earth Syst. Sci. 15, 45–57 (2015).
Google Scholar
McAdoo, B. G. et al. Roads and landslides in Nepal: how development affects environmental risk. Nat. Hazards Earth Syst. Sci. 18, 3203–3210 (2018).
Google Scholar
Bradley, K. et al. Earthquake-triggered 2018 Palu Valley landslides enabled by wet rice cultivation. Nat. Geosci. 12, 935–939 (2019).
Google Scholar
Watkinson, I. M. & Hall, R. Impact of communal irrigation on the 2018 Palu earthquake-triggered landslides. Nat. Geosci. 12, 940–945 (2019).
Google Scholar
Alongi, D. M. Present state and future of the world’s mangrove forests. Environ. Conserv. 29, 331–349 (2002).
Google Scholar
Giri, C. et al. Mangrove forest distributions and dynamics (1975–2005) of the tsunami‐affected region of Asia. J. Biogeogr. 35, 519–528 (2008).
Google Scholar
IPCC. in Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II, and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds The Core Writing Team, Lee, H. & Romero, J.) 35–115 (IPCC, 2023).
Persichillo, M. G., Bordoni, M. & Meisina, C. The role of land use changes in the distribution of shallow landslides. Sci. Total Environ. 574, 924–937 (2017).
Google Scholar
Bordoni, M. et al. in Landslides and Engineered Slopes. Experience, Theory and Practice (eds Aversa, S., Cascini, L., Picarelli, L. & Scavia, C.) 467–475 (Associazione Geotecnica Italiana, 2016).
Dong, L., Cao, J. & Liu, X. Recent developments in sea-level rise and its related geological disasters mitigation: a review. J. Mar. Sci. Eng. 10, 355 (2022).
Google Scholar
Wallman, D., Wells, E. C. & Rivera-Collazo, I. C. The environmental legacies of colonialism in the northern neotropics: introduction to the special issue. Environ. Archaeol. 23, 1–3 (2018).
Google Scholar
Oetjen, J. et al. A comprehensive review on structural tsunami countermeasures. Nat. Hazards 113, 1419–1449 (2022).
Google Scholar
Wisner, B., Blaikie, P., Cannon, T. & Davis, I. At Risk: Natural Hazards, People’s Vulnerability and Disasters (Routledge, 1994).
Alexander, D. On the causes of landslides: human activities, perception, and natural processes. Environ. Geol. Water Sci. 20, 165–179 (1992).
Google Scholar
Crozier, M. J. Deciphering the effect of climate change on landslide activity: a review. Geomorphology 124, 260–267 (2010).
Google Scholar
Bird, J. F. & Bommer, J. J. Earthquake losses due to ground failure. Eng. Geol. 75, 147–179 (2004).
Google Scholar
Keefer, D. K. Rock avalanches caused by earthquakes: source characteristics. Science 223, 1288–1290 (1984).
Google Scholar
Meunier, P., Hovius, N. & Haines, J. A. Topographic site effects and the location of earthquake induced landslides. Earth Planet. Sci. Lett. 275, 221–232 (2008).
Google Scholar
Keefer, D. K. Investigating landslides caused by earthquakes — a historical review. Surv. Geophys. 23, 473–510 (2002).
Google Scholar
Rodrıguez, C. E., Bommer, J. J. & Chandler, R. J. Earthquake-induced landslides: 1980–1997. Soil Dyn. Earthq. Eng. https://doi.org/10.1016/j.epsl.2018.11.005 (1999).
Valagussa, A., Marc, O., Frattini, P. & Crosta, G. B. Seismic and geological controls on earthquake-induced landslide size. Earth Planet. Sci. Lett. 506, 268–281 (2019).
Google Scholar
Parker, R. N. et al. Spatial distributions of earthquake-induced landslides and hillslope preconditioning in the northwest South Island, New Zealand. Earth Surf. Dyn. 3, 501–525 (2015).
Google Scholar
Loche, M. et al. Surface temperature controls the pattern of post-earthquake landslide activity. Sci. Rep. 12, 988 (2022).
Google Scholar
Qiu, J. A year after a devastating earthquake triggered killer avalanches and rock falls in Nepal, scientists are wiring up mountainsides to forecast hazards. Nature 532, 428–431 (2016).
Google Scholar
Marc, O., Hovius, N., Meunier, P., Uchida, T. & Hayashi, S. Transient changes of landslide rates after earthquakes. Geology 43, 883–886 (2015).
Google Scholar
Ewers, R. M. et al. Past and future trajectories of forest loss in New Zealand. Biol. Conserv. 133, 312–325 (2006).
Google Scholar
Glade, T. Landslide occurrence as a response to land use change: a review of evidence from New Zealand. CATENA 51, 297–314 (2003).
Google Scholar
Borella, J. W., Quigley, M. & Vick, L. Anthropocene rockfalls travel farther than prehistoric predecessors. Sci. Adv. 2, e1600969 (2016).
Google Scholar
Borella, J. et al. Geologic and geomorphic controls on rockfall hazard: how well do past rockfalls predict future distributions? Nat. Hazards Earth Syst. Sci. 19, 2249–2280 (2019).
Google Scholar
Warner, K., Hamza, M., Oliver-Smith, A., Renaud, F. & Julca, A. Climate change, environmental degradation and migration. Nat. Hazards 55, 689–715 (2010).
Google Scholar
Owen, L. A. et al. Landslides triggered by the 8 October 2005 Kashmir earthquake. Geomorphology 94, 1–9 (2008).
Google Scholar
Hung, J.-J. Chi-Chi earthquake induced landslides in Taiwan. Earthq. Eng. Eng. Seismol. 2, 25–33 (2000).
Gariano, S. L. & Guzzetti, F. Landslides in a changing climate. Earth Sci. Rev. 162, 227–252 (2016).
Google Scholar
Haque, U. et al. The human cost of global warming: deadly landslides and their triggers (1995–2014). Sci. Total Environ. 682, 673–684 (2019).
Google Scholar
IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A. & Rama, B.) (Cambridge Univ. Press, 2023); https://doi.org/10.1017/9781009325844.
Schauwecker, S. et al. Anticipating cascading effects of extreme precipitation with pathway schemes — three case studies from Europe. Environ. Int. 127, 291–304 (2019).
Google Scholar
Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).
Google Scholar
Borella, J. et al. Influence of anthropogenic landscape modifications and infrastructure on the geological characteristics of liquefaction. Anthropocene 29, 100235 (2020).
Google Scholar
Townsend, D. et al. Mapping surface liquefaction caused by the September 2010 and February 2011 Canterbury earthquakes: a digital dataset. N. Z. J. Geol. Geophys. 59, 496–513 (2016).
Google Scholar
Giona Bucci, M. et al. Associations between sediment architecture and liquefaction susceptibility in fluvial settings: the 2010–2011 Canterbury earthquake sequence. N. Z. Eng. Geol. 237, 181–197 (2018).
Google Scholar
Macpherson, J. M. Environmental Geology of the Avon-Heathcote Estuary (University of Canterbury, 1978).
Wotherspoon, L. M., Pender, M. J. & Orense, R. P. Relationship between observed liquefaction at Kaiapoi following the 2010 Darfield earthquake and former channels of the Waimakariri River. Eng. Geol. 125, 45–55 (2012).
Google Scholar
Zhu, J. et al. A geospatial liquefaction model for rapid response and loss estimation. Earthq. Spectra 31, 1813–1837 (2015).
Google Scholar
Pradel, D., Wartman, J. & Tiwari, B. Impact of anthropogenic changes on liquefaction along the Tone River during the 2011 Tohoku earthquake. Nat. Hazards Rev. 15, 13–26 (2014).
Google Scholar
Seed, R. B., Dickenson, S. E. & Idriss, I. M. Principal geotechnical aspects of the 1989 Loma Prieta earthquake. Soils Found. 31, 1–26 (1991).
Google Scholar
Cruz-Atienza, V. M. et al. Long duration of ground motion in the paradigmatic Valley of Mexico. Sci. Rep. 6, 38807 (2016).
Google Scholar
Tena-Colunga, A., Hernández-Ramírez, H., Godínez-Domínguez, E. A. & Pérez-Rocha, L. E. Mexico City during and after the September 19, 2017 earthquake: assessment of seismic resilience and ongoing recovery process. J. Civ. Struct. Health Monit. 11, 1275–1299 (2021).
Google Scholar
Díaz del Castillo, B. Historia Verdadera de La Conquista de La Nueva España edn Serés, G. (1632); https://www.rae.es/sites/default/files/Aparato_de_variantes_Historia_verdadera_de_la_conquista_de_la_Nueva_Espana.pdf.
Yasuhara, K., Murakami, S., Mimura, N., Komine, H. & Recio, J. Influence of global warming on coastal infrastructural instability. Sustain. Sci. 2, 13–25 (2007).
Google Scholar
Monk, C. B., Van Ballegooy, S., Hughes, M. & Villeneuve, M. Liquefaction vulnerability increase at North New Brighton due to subsidence, sea level rise and reduction in thickness of the non-liquefying layer. Bull. N. Z. Soc. Earthq. Eng. 49, 334–340 (2016).
Li, P., Tian, Z., Bo, J., Zhu, S. & Li, Y. Study on sand liquefaction induced by Songyuan earthquake with a magnitude of M5.7 in China. Sci. Rep. 12, 9588 (2022).
Google Scholar
Barker, R. & Molle, F. Evolution of Irrigation in South and Southeast Asia. Comprehensive Assessment Research Report 5 (International Water Management Institute, 2004).
Li, K. & Xu, Z. Overview of Dujiangyan Irrigation Scheme of ancient China with current theory. Irrig. Drain. 55, 291–298 (2006).
Google Scholar
Liu-Zeng, J. et al. Liquefaction in western Sichuan Basin during the 2008 Mw 7.9 Wenchuan earthquake, China. Tectonophysics 694, 214–238 (2017).
Google Scholar
Wang, C., Cheng, L.-H., Chin, C.-V. & Yu, S.-B. Coseismic hydrologic response of an alluvial fan to the 1999 Chi-Chi earthquake. Taiwan. Geol. 29, 831 (2001).
Google Scholar
Parthasarathi, T., Vanitha, K., Mohandass, S. & Vered, E. Evaluation of drip irrigation system for water productivity and yield of rice. Agron. J. 110, 2378–2389 (2018).
Google Scholar
He, J., Ma, B. & Tian, J. Water production function and optimal irrigation schedule for rice (Oryza sativa L.) cultivation with drip irrigation under plastic film-mulched. Sci. Rep. 12, 17243 (2022).
Google Scholar
Carrijo, D. R., Lundy, M. E. & Linquist, B. A. Rice yields and water use under alternate wetting and drying irrigation: a meta-analysis. Field Crop. Res. 203, 173–180 (2017).
Google Scholar
Lansing, J. S. et al. Adaptive irrigation management by Balinese farmers reduces greenhouse gas emissions and increases rice yields. Philos. Trans. R. Soc. B Biol. Sci. 378, 20220400 (2023).
Google Scholar
McCaughey, J. W., Daly, P., Mundir, I., Mahdi, S. & Patt, A. Socio-economic consequences of post-disaster reconstruction in hazard-exposed areas. Nat. Sustain. 1, 38–43 (2018).
Google Scholar
Boret, S. P. & Gerster, J. Social lives of tsunami walls in Japan: concrete culture, social innovation and coastal communities. IOP Conf. Ser. Earth Environ. Sci. 630, 012029 (2021).
Google Scholar
Cochard, R. et al. The 2004 tsunami in Aceh and southern Thailand: a review on coastal ecosystems, wave hazards and vulnerability. Perspect. Plant. Ecol. Evol. Syst. 10, 3–40 (2008).
Google Scholar
Richards, D. R. & Friess, D. A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl Acad. Sci. USA 113, 344–349 (2016).
Google Scholar
Valiela, I., Bowen, J. L. & York, J. K. Mangrove forests: one of the world’s threatened major tropical environments. BioScience 51, 807 (2001).
Google Scholar
Ilman, M., Dargusch, P., Dart, P. & Onrizal A historical analysis of the drivers of loss and degradation of Indonesia’s mangroves. Land Use Policy 54, 448–459 (2016).
Google Scholar
Eddy, T. D. et al. Global decline in capacity of coral reefs to provide ecosystem services. One Earth 4, 1278–1285 (2021).
Google Scholar
Massel, S. R., Furukawa, K. & Brinkman, R. M. Surface wave propagation in mangrove forests. Fluid Dyn. Res. 24, 219–249 (1999).
Google Scholar
Kerr, A. M., Baird, A. H. & Campbell, S. J. Comments on “Coastal mangrove forests mitigated tsunami” by K. Kathiresan and N. Rajendran [Estuar. Coast. Shelf Sci. 65 (2005) 601e606]. Estuar. Coast. Shelf Sci. 67, 539–541 (2006).
Tanaka, N. Vegetation bioshields for tsunami mitigation: review of effectiveness, limitations, construction, and sustainable management. Landsc. Ecol. Eng. 5, 71–79 (2009).
Google Scholar
Mukherjee, A. et al. Forest density is more effective than tree rigidity at reducing the onshore energy flux of tsunamis. Coast. Eng. 182, 104286 (2023).
Google Scholar
McAdoo, B. G. et al. Coral reefs as buffers during the 2009 South Pacific tsunami, Upolu Island, Samoa. Earth-Sci. Rev. 107, 147–155 (2011).
Google Scholar
Dengler, L. & Preuss, J. Mitigation lessons from the July 17, 1998 Papua New Guinea Tsunami. Pure Appl. Geophys. 160, 2001–2031 (2003).
Google Scholar
Kunkel, C. M., Hallberg, R. W. & Oppenheimer, M. Coral reefs reduce tsunami impact in model simulations. Geophys. Res. Lett. 33, L23612 (2006).
Google Scholar
Borrero, J. C., Synolakis, C. E. & Fritz, H. Northern sumatra field survey after the December 2004 great Sumatra earthquake and Indian Ocean tsunami. Earthq. Spectra 22, 93–104 (2006).
Google Scholar
Dahdouh-Guebas, F. et al. How effective were mangroves as a defence against the recent tsunami? Curr. Biol. 15, R443–R447 (2005).
Google Scholar
Danielsen, F. et al. The Asian tsunami: a protective role for coastal vegetation. Science 310, 643 (2005).
Google Scholar
Chatenoux, B. & Peduzzi, P. Impacts from the 2004 Indian Ocean tsunami: analysing the potential protecting role of environmental features. Nat. Hazards 40, 289–304 (2007).
Google Scholar
Laso Bayas, J. C. et al. Influence of coastal vegetation on the 2004 tsunami wave impact in West Aceh. Proc. Natl Acad. Sci. USA 108, 18612–18617 (2011).
Google Scholar
Macreadie, P. I. et al. Blue carbon as a natural climate solution. Nat. Rev. Earth Environ. 2, 826–839 (2021).
Google Scholar
Lunghino, B. et al. The protective benefits of tsunami mitigation parks and ramifications for their strategic design. Proc. Natl Acad. Sci. USA 117, 10740–10745 (2020).
Google Scholar
Sim, S. Y., Huang, Z. & Switzer, A. D. An experimental study on tsunami inundation over complex coastal topography. Theor. Appl. Mech. Lett. 3, 032006 (2013).
Google Scholar
Synolakis, C. E. & Kong, L. Runup measurements of the December 2004 Indian Ocean tsunami. Earthq. Spectra 22, 67–91 (2006).
Google Scholar
Parsons, T., Wu, P., Wei, M. (M.). & D’Hondt, S. The weight of New York City: possible contributions to subsidence from anthropogenic sources. Earths Future 11, e2022EF003465 (2023).
Google Scholar
Tay, C. et al. Sea-level rise from land subsidence in major coastal cities. Nat. Sustain. 5, 1049–1057 (2022).
Google Scholar
Sieh, K. et al. Earthquake supercycles inferred from sea-level changes recorded in the corals of West Sumatra. Science 322, 1674–1678 (2008).
Google Scholar
Hayashi, S., Kubo, K. & Nakase, A. Damage to harbour structures by the Niigata earthquake. Soils Found. 6, 89–112 (1966).
Google Scholar
Kawasumi, H. General Report on the Niigata Earthquake of 1964 (Tokyo Electrical Engineering College Press, 1968).
Nishimura, T., Munekane, H. & Yarai, H. The 2011 off the Pacific coast of Tohoku earthquake and its aftershocks observed by GEONET. Earth Planets Space 63, 631–363 (2011).
Google Scholar
Satirapod, C., Trisirisatayawong, I., Fleitout, L., Garaud, J. D. & Simons, W. J. F. Vertical motions in Thailand after the 2004 Sumatra–Andaman earthquake from GPS observations and its geophysical modelling. Adv. Space Res. 51, 1565–1571 (2013).
Google Scholar
Hughes, M. W. The sinking city: earthquakes increase flood hazard in Christchurch, New Zealand. GSA Today https://doi.org/10.1130/GSATG221A.1 (2015).
Feagin, R. A. et al. Shelter from the storm? Use and misuse of coastal vegetation bioshields for managing natural disasters. Conserv. Lett. 3, 1–11 (2010).
Google Scholar
Berkes, F. Indigenous ways of knowing and the study of environmental change. J. R. Soc. N. Z. 39, 151–156 (2009).
Google Scholar
Usher, P. J. Traditional ecological knowledge in environmental assessment and management. ARCTIC 53, 183–193 (2000).
Google Scholar
Whyte, K. P. On the role of traditional ecological knowledge as a collaborative concept: a philosophical study. Ecol. Process. 2, 7 (2013).
Google Scholar
Berkes, F. Understanding uncertainty and reducing vulnerability: lessons from resilience thinking. Nat. Hazards 41, 283–295 (2007).
Google Scholar
Khalafzai, M. A. K. in Natural Hazards — New Insights (ed Mokhtari, M.) (IntechOpen, 2023).
Tarter, A. M., Freeman, K. K. & Sander, K. A History of Landscape-Level Land Management Efforts in Haiti (World Bank, 2016).
Kurnio, H., Fekete, A., Naz, F., Norf, C. & Jüpner, R. Resilience learning and indigenous knowledge of earthquake risk in Indonesia. Int. J. Disaster Risk Reduct. 62, 102423 (2021).
Google Scholar
UN/ISDR. Indigenous Knowledge for Disaster Risk Reduction: Good Practices and Lessons Learned from Experiences in the Asia-Pacific Region (eds Shaw, R., Uy, N. & Baumwoll, J.) (UN/ISDR, 2008).
Hou, L. & Shi, P. Haiti 2010 earthquake — how to explain such huge losses? Int. J. Disaster Risk Sci. 2, 25–33 (2011).
Google Scholar
World Bank. What Did We Learn? The Shelter Response and Housing Recovery in the First Two Years after the 2010 Haiti Earthquake (World Bank, 2016); https://doi.org/10.1596/26729.
Havenith, H.-B. et al. Earthquake-induced landslides in Haiti: analysis of seismotectonic and possible climatic influences. Nat. Hazards Earth Syst. Sci. 22, 3361–3384 (2022).
Google Scholar
Poupardin, A. et al. Deep submarine landslide contribution to the 2010 Haiti earthquake tsunami. Nat. Hazards Earth Syst. Sci. 20, 2055–2065 (2020).
Google Scholar
Farmer, P. Haiti after the Earthquake (PublicAffairs, 2012).
Dubois, L. Haiti: the Aftershocks of History (Picador, 2013).
Katz, J. The Big Truck That Went by: How the World Came to Save Haiti and Left Behind a Disaster (St. Martin’s Griffin, 2014).
UNU-EHS. Interconnected Disaster Risks (UNU-EHS, 2022).
Churches, C. E., Wampler, P. J., Sun, W. & Smith, A. J. Evaluation of forest cover estimates for Haiti using supervised classification of Landsat data. Int. J. Appl. Earth Obs. Geoinf. 30, 203–216 (2014).
Audefroy, J. F. Haiti: post-earthquake lessons learned from traditional construction. Environ. Urban. 23, 447–462 (2011).
Google Scholar
Mason, H. B. et al. East Palu Valley flowslides induced by the 2018 M 7.5 Palu-Donggala earthquake. Geomorphology 373, 107482 (2021).
Google Scholar
Pelinovsky, E., Yuliadi, D., Prasetya, G. & Hidayat, R. The 1996 Sulawesi tsunami. Nat. Hazards 16, 29–38 (1996).
Google Scholar
Martin, S. S., Cummins, P. R. & Meltzner, A. J. Gempa Nusantara: a database of 7380 macroseismic observations for 1200 historical earthquakes in Indonesia from 1546 to 1950. Bull. Seismol. Soc. Am. 112, 2958–2980 (2022).
Google Scholar
Paulik, R. et al. Tsunami hazard and built environment damage observations from Palu City after the September 28 2018 Sulawesi earthquake and tsunami. Pure Appl. Geophys. 176, 3305–3321 (2019).
Google Scholar
Syamsidik, B., Umar, M., Margaglio, G. & Fitrayansyah, A. Post-tsunami survey of the 28 September 2018 tsunami near Palu Bay in Central Sulawesi, Indonesia: impacts and challenges to coastal communities. Int. J. Disaster Risk Reduct. 38, 101229 (2019).
Google Scholar
Omira, R. et al. The September 28th, 2018, tsunami in Palu-Sulawesi, Indonesia: a post-event field survey. Pure Appl. Geophys. 176, 1379–1395 (2019).
Google Scholar
Wanger, T. C. et al. Ecosystem-based tsunami mitigation for tropical biodiversity hotspots. Trends Ecol. Evol. 35, 96–100 (2020).
Google Scholar
Liu, P. L.-F. et al. Coastal landslides in Palu Bay during 2018 Sulawesi earthquake and tsunami. Landslides 17, 2085–2098 (2020).
Google Scholar
Weber, R., Kreisel, W. & Faust, H. Colonial interventions on the cultural landscape of Central Sulawesi by ‘ethical policy’: the impact of the Dutch rule in Palu and Kulawi Valley, 1905–1942. Asian J. Soc. Sci. 31, 398–434 (2003).
Google Scholar
Tunas, I. G., Tanga, A. & Oktavia, S. Impact of landslides induced by the 2018 Palu earthquake on flash flood in Bangga River Basin, Sulawesi, Indonesia. J. Ecol. Eng. 21, 190–200 (2020).
Google Scholar
Cummins, P. R. Irrigation and the Palu landslides. Nat. Geosci. 12, 881–882 (2019).
Google Scholar
Soloviev, S. L. & Go, C. N. Catalogue of Tsunamis on the Western Shore of the Pacific Ocean (Nauka, 1974).