Share

Human amplification of secondary earthquake hazards through environmental modifications

  • Daniell, J. E., Schaefer, A. M. & Wenzel, F. Losses associated with secondary effects in earthquakes. Front. Built Environ. 3, 30 (2017).

    Article 

    Google Scholar 

  • Telford, J. & Cosgrave, J. Joint Evaluation of the International Response to the Indian Ocean Tsunami: Synthesis Report (Tsunami Evaluation Coalition, 2006).

  • Frankenberg, E., Gillespie, T., Preston, S., Sikoki, B. & Thomas, D. Mortality, the family and the Indian Ocean tsunami. Econ. J. 121, F162–F182 (2011).

    Article 

    Google Scholar 

  • Kajitani, Y., Chang, S. E. & Tatano, H. Economic impacts of the 2011 Tohoku-Oki earthquake and tsunami. Earthq. Spectra 29, 457–478 (2013).

    Article 

    Google Scholar 

  • Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501 (2021).

    Article 
    CAS 

    Google Scholar 

  • Tarolli, P. & Sofia, G. Human topographic signatures and derived geomorphic processes across landscapes. Geomorphology 255, 140–161 (2016).

    Article 

    Google Scholar 

  • Gill, J. C. & Malamud, B. D. Hazard interactions and interaction networks (cascades) within multi-hazard methodologies. Earth Syst. Dyn. 7, 659–679 (2016).

    Article 

    Google Scholar 

  • Gill, J. C. & Malamud, B. D. Anthropogenic processes, natural hazards, and interactions in a multi-hazard framework. Earth-Sci. Rev. 166, 246–269 (2017).

    Article 

    Google Scholar 

  • Sidle, R. C. & Ochiai, H. Landslides: Processes, Prediction, and Land Use (American Geophysical Union, 2006).

  • Barnard, P. L., Owen, L. A., Sharma, M. C. & Finkel, R. C. Natural and human-induced landsliding in the Garhwal Himalaya of northern India. Geomorphology 40, 21–35 (2001).

    Article 

    Google Scholar 

  • Brenning, A., Schwinn, M., Ruiz-Páez, A. P. & Muenchow, J. Landslide susceptibility near highways is increased by 1 order of magnitude in the Andes of southern Ecuador, Loja province. Nat. Hazards Earth Syst. Sci. 15, 45–57 (2015).

    Article 

    Google Scholar 

  • McAdoo, B. G. et al. Roads and landslides in Nepal: how development affects environmental risk. Nat. Hazards Earth Syst. Sci. 18, 3203–3210 (2018).

    Article 

    Google Scholar 

  • Bradley, K. et al. Earthquake-triggered 2018 Palu Valley landslides enabled by wet rice cultivation. Nat. Geosci. 12, 935–939 (2019).

    Article 
    CAS 

    Google Scholar 

  • Watkinson, I. M. & Hall, R. Impact of communal irrigation on the 2018 Palu earthquake-triggered landslides. Nat. Geosci. 12, 940–945 (2019).

    Article 
    CAS 

    Google Scholar 

  • Alongi, D. M. Present state and future of the world’s mangrove forests. Environ. Conserv. 29, 331–349 (2002).

    Article 

    Google Scholar 

  • Giri, C. et al. Mangrove forest distributions and dynamics (1975–2005) of the tsunami‐affected region of Asia. J. Biogeogr. 35, 519–528 (2008).

    Article 

    Google Scholar 

  • IPCC. in Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II, and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds The Core Writing Team, Lee, H. & Romero, J.) 35–115 (IPCC, 2023).

  • Persichillo, M. G., Bordoni, M. & Meisina, C. The role of land use changes in the distribution of shallow landslides. Sci. Total Environ. 574, 924–937 (2017).

    Article 
    CAS 

    Google Scholar 

  • Bordoni, M. et al. in Landslides and Engineered Slopes. Experience, Theory and Practice (eds Aversa, S., Cascini, L., Picarelli, L. & Scavia, C.) 467–475 (Associazione Geotecnica Italiana, 2016).

  • Dong, L., Cao, J. & Liu, X. Recent developments in sea-level rise and its related geological disasters mitigation: a review. J. Mar. Sci. Eng. 10, 355 (2022).

    Article 

    Google Scholar 

  • Wallman, D., Wells, E. C. & Rivera-Collazo, I. C. The environmental legacies of colonialism in the northern neotropics: introduction to the special issue. Environ. Archaeol. 23, 1–3 (2018).

    Article 

    Google Scholar 

  • Oetjen, J. et al. A comprehensive review on structural tsunami countermeasures. Nat. Hazards 113, 1419–1449 (2022).

    Article 

    Google Scholar 

  • Wisner, B., Blaikie, P., Cannon, T. & Davis, I. At Risk: Natural Hazards, Peoples Vulnerability and Disasters (Routledge, 1994).

  • Alexander, D. On the causes of landslides: human activities, perception, and natural processes. Environ. Geol. Water Sci. 20, 165–179 (1992).

    Article 

    Google Scholar 

  • Crozier, M. J. Deciphering the effect of climate change on landslide activity: a review. Geomorphology 124, 260–267 (2010).

    Article 

    Google Scholar 

  • Bird, J. F. & Bommer, J. J. Earthquake losses due to ground failure. Eng. Geol. 75, 147–179 (2004).

    Article 

    Google Scholar 

  • Keefer, D. K. Rock avalanches caused by earthquakes: source characteristics. Science 223, 1288–1290 (1984).

    Article 
    CAS 

    Google Scholar 

  • Meunier, P., Hovius, N. & Haines, J. A. Topographic site effects and the location of earthquake induced landslides. Earth Planet. Sci. Lett. 275, 221–232 (2008).

    Article 
    CAS 

    Google Scholar 

  • Keefer, D. K. Investigating landslides caused by earthquakes — a historical review. Surv. Geophys. 23, 473–510 (2002).

    Article 

    Google Scholar 

  • Rodrıguez, C. E., Bommer, J. J. & Chandler, R. J. Earthquake-induced landslides: 1980–1997. Soil Dyn. Earthq. Eng. https://doi.org/10.1016/j.epsl.2018.11.005 (1999).

  • Valagussa, A., Marc, O., Frattini, P. & Crosta, G. B. Seismic and geological controls on earthquake-induced landslide size. Earth Planet. Sci. Lett. 506, 268–281 (2019).

    Article 
    CAS 

    Google Scholar 

  • Parker, R. N. et al. Spatial distributions of earthquake-induced landslides and hillslope preconditioning in the northwest South Island, New Zealand. Earth Surf. Dyn. 3, 501–525 (2015).

    Article 

    Google Scholar 

  • Loche, M. et al. Surface temperature controls the pattern of post-earthquake landslide activity. Sci. Rep. 12, 988 (2022).

    Article 
    CAS 

    Google Scholar 

  • Qiu, J. A year after a devastating earthquake triggered killer avalanches and rock falls in Nepal, scientists are wiring up mountainsides to forecast hazards. Nature 532, 428–431 (2016).

    Article 

    Google Scholar 

  • Marc, O., Hovius, N., Meunier, P., Uchida, T. & Hayashi, S. Transient changes of landslide rates after earthquakes. Geology 43, 883–886 (2015).

    Article 

    Google Scholar 

  • Ewers, R. M. et al. Past and future trajectories of forest loss in New Zealand. Biol. Conserv. 133, 312–325 (2006).

    Article 

    Google Scholar 

  • Glade, T. Landslide occurrence as a response to land use change: a review of evidence from New Zealand. CATENA 51, 297–314 (2003).

    Article 

    Google Scholar 

  • Borella, J. W., Quigley, M. & Vick, L. Anthropocene rockfalls travel farther than prehistoric predecessors. Sci. Adv. 2, e1600969 (2016).

    Article 

    Google Scholar 

  • Borella, J. et al. Geologic and geomorphic controls on rockfall hazard: how well do past rockfalls predict future distributions? Nat. Hazards Earth Syst. Sci. 19, 2249–2280 (2019).

    Article 

    Google Scholar 

  • Warner, K., Hamza, M., Oliver-Smith, A., Renaud, F. & Julca, A. Climate change, environmental degradation and migration. Nat. Hazards 55, 689–715 (2010).

    Article 

    Google Scholar 

  • Owen, L. A. et al. Landslides triggered by the 8 October 2005 Kashmir earthquake. Geomorphology 94, 1–9 (2008).

    Article 

    Google Scholar 

  • Hung, J.-J. Chi-Chi earthquake induced landslides in Taiwan. Earthq. Eng. Eng. Seismol. 2, 25–33 (2000).

    Google Scholar 

  • Gariano, S. L. & Guzzetti, F. Landslides in a changing climate. Earth Sci. Rev. 162, 227–252 (2016).

    Article 

    Google Scholar 

  • Haque, U. et al. The human cost of global warming: deadly landslides and their triggers (1995–2014). Sci. Total Environ. 682, 673–684 (2019).

    Article 
    CAS 

    Google Scholar 

  • IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A. & Rama, B.) (Cambridge Univ. Press, 2023); https://doi.org/10.1017/9781009325844.

  • Schauwecker, S. et al. Anticipating cascading effects of extreme precipitation with pathway schemes — three case studies from Europe. Environ. Int. 127, 291–304 (2019).

    Article 

    Google Scholar 

  • Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).

    Article 
    CAS 

    Google Scholar 

  • Borella, J. et al. Influence of anthropogenic landscape modifications and infrastructure on the geological characteristics of liquefaction. Anthropocene 29, 100235 (2020).

    Article 

    Google Scholar 

  • Townsend, D. et al. Mapping surface liquefaction caused by the September 2010 and February 2011 Canterbury earthquakes: a digital dataset. N. Z. J. Geol. Geophys. 59, 496–513 (2016).

    Article 

    Google Scholar 

  • Giona Bucci, M. et al. Associations between sediment architecture and liquefaction susceptibility in fluvial settings: the 2010–2011 Canterbury earthquake sequence. N. Z. Eng. Geol. 237, 181–197 (2018).

    Article 

    Google Scholar 

  • Macpherson, J. M. Environmental Geology of the Avon-Heathcote Estuary (University of Canterbury, 1978).

  • Wotherspoon, L. M., Pender, M. J. & Orense, R. P. Relationship between observed liquefaction at Kaiapoi following the 2010 Darfield earthquake and former channels of the Waimakariri River. Eng. Geol. 125, 45–55 (2012).

    Article 

    Google Scholar 

  • Zhu, J. et al. A geospatial liquefaction model for rapid response and loss estimation. Earthq. Spectra 31, 1813–1837 (2015).

    Article 

    Google Scholar 

  • Pradel, D., Wartman, J. & Tiwari, B. Impact of anthropogenic changes on liquefaction along the Tone River during the 2011 Tohoku earthquake. Nat. Hazards Rev. 15, 13–26 (2014).

    Article 

    Google Scholar 

  • Seed, R. B., Dickenson, S. E. & Idriss, I. M. Principal geotechnical aspects of the 1989 Loma Prieta earthquake. Soils Found. 31, 1–26 (1991).

    Article 

    Google Scholar 

  • Cruz-Atienza, V. M. et al. Long duration of ground motion in the paradigmatic Valley of Mexico. Sci. Rep. 6, 38807 (2016).

    Article 
    CAS 

    Google Scholar 

  • Tena-Colunga, A., Hernández-Ramírez, H., Godínez-Domínguez, E. A. & Pérez-Rocha, L. E. Mexico City during and after the September 19, 2017 earthquake: assessment of seismic resilience and ongoing recovery process. J. Civ. Struct. Health Monit. 11, 1275–1299 (2021).

    Article 
    CAS 

    Google Scholar 

  • Díaz del Castillo, B. Historia Verdadera de La Conquista de La Nueva España edn Serés, G. (1632); https://www.rae.es/sites/default/files/Aparato_de_variantes_Historia_verdadera_de_la_conquista_de_la_Nueva_Espana.pdf.

  • Yasuhara, K., Murakami, S., Mimura, N., Komine, H. & Recio, J. Influence of global warming on coastal infrastructural instability. Sustain. Sci. 2, 13–25 (2007).

    Article 

    Google Scholar 

  • Monk, C. B., Van Ballegooy, S., Hughes, M. & Villeneuve, M. Liquefaction vulnerability increase at North New Brighton due to subsidence, sea level rise and reduction in thickness of the non-liquefying layer. Bull. N. Z. Soc. Earthq. Eng. 49, 334–340 (2016).

    Google Scholar 

  • Li, P., Tian, Z., Bo, J., Zhu, S. & Li, Y. Study on sand liquefaction induced by Songyuan earthquake with a magnitude of M5.7 in China. Sci. Rep. 12, 9588 (2022).

    Article 
    CAS 

    Google Scholar 

  • Barker, R. & Molle, F. Evolution of Irrigation in South and Southeast Asia. Comprehensive Assessment Research Report 5 (International Water Management Institute, 2004).

  • Li, K. & Xu, Z. Overview of Dujiangyan Irrigation Scheme of ancient China with current theory. Irrig. Drain. 55, 291–298 (2006).

    Article 

    Google Scholar 

  • Liu-Zeng, J. et al. Liquefaction in western Sichuan Basin during the 2008 Mw 7.9 Wenchuan earthquake, China. Tectonophysics 694, 214–238 (2017).

    Article 

    Google Scholar 

  • Wang, C., Cheng, L.-H., Chin, C.-V. & Yu, S.-B. Coseismic hydrologic response of an alluvial fan to the 1999 Chi-Chi earthquake. Taiwan. Geol. 29, 831 (2001).

    Article 

    Google Scholar 

  • Parthasarathi, T., Vanitha, K., Mohandass, S. & Vered, E. Evaluation of drip irrigation system for water productivity and yield of rice. Agron. J. 110, 2378–2389 (2018).

    Article 
    CAS 

    Google Scholar 

  • He, J., Ma, B. & Tian, J. Water production function and optimal irrigation schedule for rice (Oryza sativa L.) cultivation with drip irrigation under plastic film-mulched. Sci. Rep. 12, 17243 (2022).

    Article 
    CAS 

    Google Scholar 

  • Carrijo, D. R., Lundy, M. E. & Linquist, B. A. Rice yields and water use under alternate wetting and drying irrigation: a meta-analysis. Field Crop. Res. 203, 173–180 (2017).

    Article 

    Google Scholar 

  • Lansing, J. S. et al. Adaptive irrigation management by Balinese farmers reduces greenhouse gas emissions and increases rice yields. Philos. Trans. R. Soc. B Biol. Sci. 378, 20220400 (2023).

    Article 
    CAS 

    Google Scholar 

  • McCaughey, J. W., Daly, P., Mundir, I., Mahdi, S. & Patt, A. Socio-economic consequences of post-disaster reconstruction in hazard-exposed areas. Nat. Sustain. 1, 38–43 (2018).

    Article 

    Google Scholar 

  • Boret, S. P. & Gerster, J. Social lives of tsunami walls in Japan: concrete culture, social innovation and coastal communities. IOP Conf. Ser. Earth Environ. Sci. 630, 012029 (2021).

    Article 

    Google Scholar 

  • Cochard, R. et al. The 2004 tsunami in Aceh and southern Thailand: a review on coastal ecosystems, wave hazards and vulnerability. Perspect. Plant. Ecol. Evol. Syst. 10, 3–40 (2008).

    Article 

    Google Scholar 

  • Richards, D. R. & Friess, D. A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl Acad. Sci. USA 113, 344–349 (2016).

    Article 
    CAS 

    Google Scholar 

  • Valiela, I., Bowen, J. L. & York, J. K. Mangrove forests: one of the world’s threatened major tropical environments. BioScience 51, 807 (2001).

    Article 

    Google Scholar 

  • Ilman, M., Dargusch, P., Dart, P. & Onrizal A historical analysis of the drivers of loss and degradation of Indonesia’s mangroves. Land Use Policy 54, 448–459 (2016).

    Article 

    Google Scholar 

  • Eddy, T. D. et al. Global decline in capacity of coral reefs to provide ecosystem services. One Earth 4, 1278–1285 (2021).

    Article 

    Google Scholar 

  • Massel, S. R., Furukawa, K. & Brinkman, R. M. Surface wave propagation in mangrove forests. Fluid Dyn. Res. 24, 219–249 (1999).

    Article 

    Google Scholar 

  • Kerr, A. M., Baird, A. H. & Campbell, S. J. Comments on “Coastal mangrove forests mitigated tsunami” by K. Kathiresan and N. Rajendran [Estuar. Coast. Shelf Sci. 65 (2005) 601e606]. Estuar. Coast. Shelf Sci. 67, 539–541 (2006).

  • Tanaka, N. Vegetation bioshields for tsunami mitigation: review of effectiveness, limitations, construction, and sustainable management. Landsc. Ecol. Eng. 5, 71–79 (2009).

    Article 

    Google Scholar 

  • Mukherjee, A. et al. Forest density is more effective than tree rigidity at reducing the onshore energy flux of tsunamis. Coast. Eng. 182, 104286 (2023).

    Article 

    Google Scholar 

  • McAdoo, B. G. et al. Coral reefs as buffers during the 2009 South Pacific tsunami, Upolu Island, Samoa. Earth-Sci. Rev. 107, 147–155 (2011).

    Article 

    Google Scholar 

  • Dengler, L. & Preuss, J. Mitigation lessons from the July 17, 1998 Papua New Guinea Tsunami. Pure Appl. Geophys. 160, 2001–2031 (2003).

    Article 

    Google Scholar 

  • Kunkel, C. M., Hallberg, R. W. & Oppenheimer, M. Coral reefs reduce tsunami impact in model simulations. Geophys. Res. Lett. 33, L23612 (2006).

    Article 

    Google Scholar 

  • Borrero, J. C., Synolakis, C. E. & Fritz, H. Northern sumatra field survey after the December 2004 great Sumatra earthquake and Indian Ocean tsunami. Earthq. Spectra 22, 93–104 (2006).

    Article 

    Google Scholar 

  • Dahdouh-Guebas, F. et al. How effective were mangroves as a defence against the recent tsunami? Curr. Biol. 15, R443–R447 (2005).

    Article 
    CAS 

    Google Scholar 

  • Danielsen, F. et al. The Asian tsunami: a protective role for coastal vegetation. Science 310, 643 (2005).

    Article 
    CAS 

    Google Scholar 

  • Chatenoux, B. & Peduzzi, P. Impacts from the 2004 Indian Ocean tsunami: analysing the potential protecting role of environmental features. Nat. Hazards 40, 289–304 (2007).

    Article 

    Google Scholar 

  • Laso Bayas, J. C. et al. Influence of coastal vegetation on the 2004 tsunami wave impact in West Aceh. Proc. Natl Acad. Sci. USA 108, 18612–18617 (2011).

    Article 

    Google Scholar 

  • Macreadie, P. I. et al. Blue carbon as a natural climate solution. Nat. Rev. Earth Environ. 2, 826–839 (2021).

    Article 
    CAS 

    Google Scholar 

  • Lunghino, B. et al. The protective benefits of tsunami mitigation parks and ramifications for their strategic design. Proc. Natl Acad. Sci. USA 117, 10740–10745 (2020).

    Article 
    CAS 

    Google Scholar 

  • Sim, S. Y., Huang, Z. & Switzer, A. D. An experimental study on tsunami inundation over complex coastal topography. Theor. Appl. Mech. Lett. 3, 032006 (2013).

    Article 

    Google Scholar 

  • Synolakis, C. E. & Kong, L. Runup measurements of the December 2004 Indian Ocean tsunami. Earthq. Spectra 22, 67–91 (2006).

    Article 

    Google Scholar 

  • Parsons, T., Wu, P., Wei, M. (M.). & D’Hondt, S. The weight of New York City: possible contributions to subsidence from anthropogenic sources. Earths Future 11, e2022EF003465 (2023).

    Article 

    Google Scholar 

  • Tay, C. et al. Sea-level rise from land subsidence in major coastal cities. Nat. Sustain. 5, 1049–1057 (2022).

    Article 

    Google Scholar 

  • Sieh, K. et al. Earthquake supercycles inferred from sea-level changes recorded in the corals of West Sumatra. Science 322, 1674–1678 (2008).

    Article 
    CAS 

    Google Scholar 

  • Hayashi, S., Kubo, K. & Nakase, A. Damage to harbour structures by the Niigata earthquake. Soils Found. 6, 89–112 (1966).

    Article 

    Google Scholar 

  • Kawasumi, H. General Report on the Niigata Earthquake of 1964 (Tokyo Electrical Engineering College Press, 1968).

  • Nishimura, T., Munekane, H. & Yarai, H. The 2011 off the Pacific coast of Tohoku earthquake and its aftershocks observed by GEONET. Earth Planets Space 63, 631–363 (2011).

    Article 

    Google Scholar 

  • Satirapod, C., Trisirisatayawong, I., Fleitout, L., Garaud, J. D. & Simons, W. J. F. Vertical motions in Thailand after the 2004 Sumatra–Andaman earthquake from GPS observations and its geophysical modelling. Adv. Space Res. 51, 1565–1571 (2013).

    Article 

    Google Scholar 

  • Hughes, M. W. The sinking city: earthquakes increase flood hazard in Christchurch, New Zealand. GSA Today https://doi.org/10.1130/GSATG221A.1 (2015).

  • Feagin, R. A. et al. Shelter from the storm? Use and misuse of coastal vegetation bioshields for managing natural disasters. Conserv. Lett. 3, 1–11 (2010).

    Article 

    Google Scholar 

  • Berkes, F. Indigenous ways of knowing and the study of environmental change. J. R. Soc. N. Z. 39, 151–156 (2009).

    Article 

    Google Scholar 

  • Usher, P. J. Traditional ecological knowledge in environmental assessment and management. ARCTIC 53, 183–193 (2000).

    Article 

    Google Scholar 

  • Whyte, K. P. On the role of traditional ecological knowledge as a collaborative concept: a philosophical study. Ecol. Process. 2, 7 (2013).

    Article 

    Google Scholar 

  • Berkes, F. Understanding uncertainty and reducing vulnerability: lessons from resilience thinking. Nat. Hazards 41, 283–295 (2007).

    Article 

    Google Scholar 

  • Khalafzai, M. A. K. in Natural Hazards — New Insights (ed Mokhtari, M.) (IntechOpen, 2023).

  • Tarter, A. M., Freeman, K. K. & Sander, K. A History of Landscape-Level Land Management Efforts in Haiti (World Bank, 2016).

  • Kurnio, H., Fekete, A., Naz, F., Norf, C. & Jüpner, R. Resilience learning and indigenous knowledge of earthquake risk in Indonesia. Int. J. Disaster Risk Reduct. 62, 102423 (2021).

    Article 

    Google Scholar 

  • UN/ISDR. Indigenous Knowledge for Disaster Risk Reduction: Good Practices and Lessons Learned from Experiences in the Asia-Pacific Region (eds Shaw, R., Uy, N. & Baumwoll, J.) (UN/ISDR, 2008).

  • Hou, L. & Shi, P. Haiti 2010 earthquake — how to explain such huge losses? Int. J. Disaster Risk Sci. 2, 25–33 (2011).

    Article 

    Google Scholar 

  • World Bank. What Did We Learn? The Shelter Response and Housing Recovery in the First Two Years after the 2010 Haiti Earthquake (World Bank, 2016); https://doi.org/10.1596/26729.

  • Havenith, H.-B. et al. Earthquake-induced landslides in Haiti: analysis of seismotectonic and possible climatic influences. Nat. Hazards Earth Syst. Sci. 22, 3361–3384 (2022).

    Article 

    Google Scholar 

  • Poupardin, A. et al. Deep submarine landslide contribution to the 2010 Haiti earthquake tsunami. Nat. Hazards Earth Syst. Sci. 20, 2055–2065 (2020).

    Article 

    Google Scholar 

  • Farmer, P. Haiti after the Earthquake (PublicAffairs, 2012).

  • Dubois, L. Haiti: the Aftershocks of History (Picador, 2013).

  • Katz, J. The Big Truck That Went by: How the World Came to Save Haiti and Left Behind a Disaster (St. Martin’s Griffin, 2014).

  • UNU-EHS. Interconnected Disaster Risks (UNU-EHS, 2022).

  • Churches, C. E., Wampler, P. J., Sun, W. & Smith, A. J. Evaluation of forest cover estimates for Haiti using supervised classification of Landsat data. Int. J. Appl. Earth Obs. Geoinf. 30, 203–216 (2014).

    Google Scholar 

  • Audefroy, J. F. Haiti: post-earthquake lessons learned from traditional construction. Environ. Urban. 23, 447–462 (2011).

    Article 

    Google Scholar 

  • Mason, H. B. et al. East Palu Valley flowslides induced by the 2018 M 7.5 Palu-Donggala earthquake. Geomorphology 373, 107482 (2021).

    Article 

    Google Scholar 

  • Pelinovsky, E., Yuliadi, D., Prasetya, G. & Hidayat, R. The 1996 Sulawesi tsunami. Nat. Hazards 16, 29–38 (1996).

    Article 

    Google Scholar 

  • Martin, S. S., Cummins, P. R. & Meltzner, A. J. Gempa Nusantara: a database of 7380 macroseismic observations for 1200 historical earthquakes in Indonesia from 1546 to 1950. Bull. Seismol. Soc. Am. 112, 2958–2980 (2022).

    Article 

    Google Scholar 

  • Paulik, R. et al. Tsunami hazard and built environment damage observations from Palu City after the September 28 2018 Sulawesi earthquake and tsunami. Pure Appl. Geophys. 176, 3305–3321 (2019).

    Article 

    Google Scholar 

  • Syamsidik, B., Umar, M., Margaglio, G. & Fitrayansyah, A. Post-tsunami survey of the 28 September 2018 tsunami near Palu Bay in Central Sulawesi, Indonesia: impacts and challenges to coastal communities. Int. J. Disaster Risk Reduct. 38, 101229 (2019).

    Article 

    Google Scholar 

  • Omira, R. et al. The September 28th, 2018, tsunami in Palu-Sulawesi, Indonesia: a post-event field survey. Pure Appl. Geophys. 176, 1379–1395 (2019).

    Article 

    Google Scholar 

  • Wanger, T. C. et al. Ecosystem-based tsunami mitigation for tropical biodiversity hotspots. Trends Ecol. Evol. 35, 96–100 (2020).

    Article 

    Google Scholar 

  • Liu, P. L.-F. et al. Coastal landslides in Palu Bay during 2018 Sulawesi earthquake and tsunami. Landslides 17, 2085–2098 (2020).

    Article 

    Google Scholar 

  • Weber, R., Kreisel, W. & Faust, H. Colonial interventions on the cultural landscape of Central Sulawesi by ‘ethical policy’: the impact of the Dutch rule in Palu and Kulawi Valley, 1905–1942. Asian J. Soc. Sci. 31, 398–434 (2003).

    Article 

    Google Scholar 

  • Tunas, I. G., Tanga, A. & Oktavia, S. Impact of landslides induced by the 2018 Palu earthquake on flash flood in Bangga River Basin, Sulawesi, Indonesia. J. Ecol. Eng. 21, 190–200 (2020).

    Article 

    Google Scholar 

  • Cummins, P. R. Irrigation and the Palu landslides. Nat. Geosci. 12, 881–882 (2019).

    Article 
    CAS 

    Google Scholar 

  • Soloviev, S. L. & Go, C. N. Catalogue of Tsunamis on the Western Shore of the Pacific Ocean (Nauka, 1974).

  • You may also like...