Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the health-check domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home/u347700914/domains/themoneyoffice.com/public_html/wp-includes/functions.php on line 6121

WordPress database error: [Table 'u347700914_MNO.TM_actionscheduler_actions' doesn't exist]
SELECT a.action_id FROM TM_actionscheduler_actions a LEFT JOIN TM_actionscheduler_groups g ON g.group_id=a.group_id WHERE 1=1 AND g.slug='image-optimization/cleanup' AND a.hook='image-optimization/cleanup/stuck-operation' AND a.args='[]' AND a.status IN ('pending') ORDER BY a.scheduled_date_gmt ASC LIMIT 0, 1

WordPress database error: [Table 'u347700914_MNO.TM_actionscheduler_groups' doesn't exist]
SELECT group_id FROM TM_actionscheduler_groups WHERE slug='image-optimization/cleanup'

WordPress database error: [Table 'u347700914_MNO.TM_actionscheduler_groups' doesn't exist]
SHOW FULL COLUMNS FROM `TM_actionscheduler_groups`

WordPress database error: [Table 'u347700914_MNO.TM_actionscheduler_actions' doesn't exist]
INSERT INTO TM_actionscheduler_actions ( `hook`, `status`, `scheduled_date_gmt`, `scheduled_date_local`, `schedule`, `group_id`, `priority`, `args` ) SELECT 'image-optimization/cleanup/stuck-operation', 'pending', '2025-06-28 02:07:58', '2025-06-28 03:07:58', 'O:32:\"ActionScheduler_IntervalSchedule\":5:{s:22:\"\0*\0scheduled_timestamp\";i:1751076478;s:18:\"\0*\0first_timestamp\";i:1751076478;s:13:\"\0*\0recurrence\";i:300;s:49:\"\0ActionScheduler_IntervalSchedule\0start_timestamp\";i:1751076478;s:53:\"\0ActionScheduler_IntervalSchedule\0interval_in_seconds\";i:300;}', 0, 10, '[]' FROM DUAL WHERE ( SELECT NULL FROM DUAL ) IS NULL

WordPress database error: [Table 'u347700914_MNO.TM_actionscheduler_actions' doesn't exist]
SELECT a.action_id FROM TM_actionscheduler_actions a WHERE 1=1 AND a.hook='action_scheduler/migration_hook' AND a.status IN ('in-progress') ORDER BY a.scheduled_date_gmt ASC LIMIT 0, 1

WordPress database error: [Table 'u347700914_MNO.TM_actionscheduler_actions' doesn't exist]
SELECT a.action_id FROM TM_actionscheduler_actions a WHERE 1=1 AND a.hook='action_scheduler/migration_hook' AND a.status IN ('pending') ORDER BY a.scheduled_date_gmt ASC LIMIT 0, 1

Human amplification of secondary earthquake hazards through environmental modifications – All about Money

Human amplification of secondary earthquake hazards through environmental modifications

  • Daniell, J. E., Schaefer, A. M. & Wenzel, F. Losses associated with secondary effects in earthquakes. Front. Built Environ. 3, 30 (2017).

    Article 

    Google Scholar 

  • Telford, J. & Cosgrave, J. Joint Evaluation of the International Response to the Indian Ocean Tsunami: Synthesis Report (Tsunami Evaluation Coalition, 2006).

  • Frankenberg, E., Gillespie, T., Preston, S., Sikoki, B. & Thomas, D. Mortality, the family and the Indian Ocean tsunami. Econ. J. 121, F162–F182 (2011).

    Article 

    Google Scholar 

  • Kajitani, Y., Chang, S. E. & Tatano, H. Economic impacts of the 2011 Tohoku-Oki earthquake and tsunami. Earthq. Spectra 29, 457–478 (2013).

    Article 

    Google Scholar 

  • Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501 (2021).

    Article 
    CAS 

    Google Scholar 

  • Tarolli, P. & Sofia, G. Human topographic signatures and derived geomorphic processes across landscapes. Geomorphology 255, 140–161 (2016).

    Article 

    Google Scholar 

  • Gill, J. C. & Malamud, B. D. Hazard interactions and interaction networks (cascades) within multi-hazard methodologies. Earth Syst. Dyn. 7, 659–679 (2016).

    Article 

    Google Scholar 

  • Gill, J. C. & Malamud, B. D. Anthropogenic processes, natural hazards, and interactions in a multi-hazard framework. Earth-Sci. Rev. 166, 246–269 (2017).

    Article 

    Google Scholar 

  • Sidle, R. C. & Ochiai, H. Landslides: Processes, Prediction, and Land Use (American Geophysical Union, 2006).

  • Barnard, P. L., Owen, L. A., Sharma, M. C. & Finkel, R. C. Natural and human-induced landsliding in the Garhwal Himalaya of northern India. Geomorphology 40, 21–35 (2001).

    Article 

    Google Scholar 

  • Brenning, A., Schwinn, M., Ruiz-Páez, A. P. & Muenchow, J. Landslide susceptibility near highways is increased by 1 order of magnitude in the Andes of southern Ecuador, Loja province. Nat. Hazards Earth Syst. Sci. 15, 45–57 (2015).

    Article 

    Google Scholar 

  • McAdoo, B. G. et al. Roads and landslides in Nepal: how development affects environmental risk. Nat. Hazards Earth Syst. Sci. 18, 3203–3210 (2018).

    Article 

    Google Scholar 

  • Bradley, K. et al. Earthquake-triggered 2018 Palu Valley landslides enabled by wet rice cultivation. Nat. Geosci. 12, 935–939 (2019).

    Article 
    CAS 

    Google Scholar 

  • Watkinson, I. M. & Hall, R. Impact of communal irrigation on the 2018 Palu earthquake-triggered landslides. Nat. Geosci. 12, 940–945 (2019).

    Article 
    CAS 

    Google Scholar 

  • Alongi, D. M. Present state and future of the world’s mangrove forests. Environ. Conserv. 29, 331–349 (2002).

    Article 

    Google Scholar 

  • Giri, C. et al. Mangrove forest distributions and dynamics (1975–2005) of the tsunami‐affected region of Asia. J. Biogeogr. 35, 519–528 (2008).

    Article 

    Google Scholar 

  • IPCC. in Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II, and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds The Core Writing Team, Lee, H. & Romero, J.) 35–115 (IPCC, 2023).

  • Persichillo, M. G., Bordoni, M. & Meisina, C. The role of land use changes in the distribution of shallow landslides. Sci. Total Environ. 574, 924–937 (2017).

    Article 
    CAS 

    Google Scholar 

  • Bordoni, M. et al. in Landslides and Engineered Slopes. Experience, Theory and Practice (eds Aversa, S., Cascini, L., Picarelli, L. & Scavia, C.) 467–475 (Associazione Geotecnica Italiana, 2016).

  • Dong, L., Cao, J. & Liu, X. Recent developments in sea-level rise and its related geological disasters mitigation: a review. J. Mar. Sci. Eng. 10, 355 (2022).

    Article 

    Google Scholar 

  • Wallman, D., Wells, E. C. & Rivera-Collazo, I. C. The environmental legacies of colonialism in the northern neotropics: introduction to the special issue. Environ. Archaeol. 23, 1–3 (2018).

    Article 

    Google Scholar 

  • Oetjen, J. et al. A comprehensive review on structural tsunami countermeasures. Nat. Hazards 113, 1419–1449 (2022).

    Article 

    Google Scholar 

  • Wisner, B., Blaikie, P., Cannon, T. & Davis, I. At Risk: Natural Hazards, Peoples Vulnerability and Disasters (Routledge, 1994).

  • Alexander, D. On the causes of landslides: human activities, perception, and natural processes. Environ. Geol. Water Sci. 20, 165–179 (1992).

    Article 

    Google Scholar 

  • Crozier, M. J. Deciphering the effect of climate change on landslide activity: a review. Geomorphology 124, 260–267 (2010).

    Article 

    Google Scholar 

  • Bird, J. F. & Bommer, J. J. Earthquake losses due to ground failure. Eng. Geol. 75, 147–179 (2004).

    Article 

    Google Scholar 

  • Keefer, D. K. Rock avalanches caused by earthquakes: source characteristics. Science 223, 1288–1290 (1984).

    Article 
    CAS 

    Google Scholar 

  • Meunier, P., Hovius, N. & Haines, J. A. Topographic site effects and the location of earthquake induced landslides. Earth Planet. Sci. Lett. 275, 221–232 (2008).

    Article 
    CAS 

    Google Scholar 

  • Keefer, D. K. Investigating landslides caused by earthquakes — a historical review. Surv. Geophys. 23, 473–510 (2002).

    Article 

    Google Scholar 

  • Rodrıguez, C. E., Bommer, J. J. & Chandler, R. J. Earthquake-induced landslides: 1980–1997. Soil Dyn. Earthq. Eng. https://doi.org/10.1016/j.epsl.2018.11.005 (1999).

  • Valagussa, A., Marc, O., Frattini, P. & Crosta, G. B. Seismic and geological controls on earthquake-induced landslide size. Earth Planet. Sci. Lett. 506, 268–281 (2019).

    Article 
    CAS 

    Google Scholar 

  • Parker, R. N. et al. Spatial distributions of earthquake-induced landslides and hillslope preconditioning in the northwest South Island, New Zealand. Earth Surf. Dyn. 3, 501–525 (2015).

    Article 

    Google Scholar 

  • Loche, M. et al. Surface temperature controls the pattern of post-earthquake landslide activity. Sci. Rep. 12, 988 (2022).

    Article 
    CAS 

    Google Scholar 

  • Qiu, J. A year after a devastating earthquake triggered killer avalanches and rock falls in Nepal, scientists are wiring up mountainsides to forecast hazards. Nature 532, 428–431 (2016).

    Article 

    Google Scholar 

  • Marc, O., Hovius, N., Meunier, P., Uchida, T. & Hayashi, S. Transient changes of landslide rates after earthquakes. Geology 43, 883–886 (2015).

    Article 

    Google Scholar 

  • Ewers, R. M. et al. Past and future trajectories of forest loss in New Zealand. Biol. Conserv. 133, 312–325 (2006).

    Article 

    Google Scholar 

  • Glade, T. Landslide occurrence as a response to land use change: a review of evidence from New Zealand. CATENA 51, 297–314 (2003).

    Article 

    Google Scholar 

  • Borella, J. W., Quigley, M. & Vick, L. Anthropocene rockfalls travel farther than prehistoric predecessors. Sci. Adv. 2, e1600969 (2016).

    Article 

    Google Scholar 

  • Borella, J. et al. Geologic and geomorphic controls on rockfall hazard: how well do past rockfalls predict future distributions? Nat. Hazards Earth Syst. Sci. 19, 2249–2280 (2019).

    Article 

    Google Scholar 

  • Warner, K., Hamza, M., Oliver-Smith, A., Renaud, F. & Julca, A. Climate change, environmental degradation and migration. Nat. Hazards 55, 689–715 (2010).

    Article 

    Google Scholar 

  • Owen, L. A. et al. Landslides triggered by the 8 October 2005 Kashmir earthquake. Geomorphology 94, 1–9 (2008).

    Article 

    Google Scholar 

  • Hung, J.-J. Chi-Chi earthquake induced landslides in Taiwan. Earthq. Eng. Eng. Seismol. 2, 25–33 (2000).

    Google Scholar 

  • Gariano, S. L. & Guzzetti, F. Landslides in a changing climate. Earth Sci. Rev. 162, 227–252 (2016).

    Article 

    Google Scholar 

  • Haque, U. et al. The human cost of global warming: deadly landslides and their triggers (1995–2014). Sci. Total Environ. 682, 673–684 (2019).

    Article 
    CAS 

    Google Scholar 

  • IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A. & Rama, B.) (Cambridge Univ. Press, 2023); https://doi.org/10.1017/9781009325844.

  • Schauwecker, S. et al. Anticipating cascading effects of extreme precipitation with pathway schemes — three case studies from Europe. Environ. Int. 127, 291–304 (2019).

    Article 

    Google Scholar 

  • Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).

    Article 
    CAS 

    Google Scholar 

  • Borella, J. et al. Influence of anthropogenic landscape modifications and infrastructure on the geological characteristics of liquefaction. Anthropocene 29, 100235 (2020).

    Article 

    Google Scholar 

  • Townsend, D. et al. Mapping surface liquefaction caused by the September 2010 and February 2011 Canterbury earthquakes: a digital dataset. N. Z. J. Geol. Geophys. 59, 496–513 (2016).

    Article 

    Google Scholar 

  • Giona Bucci, M. et al. Associations between sediment architecture and liquefaction susceptibility in fluvial settings: the 2010–2011 Canterbury earthquake sequence. N. Z. Eng. Geol. 237, 181–197 (2018).

    Article 

    Google Scholar 

  • Macpherson, J. M. Environmental Geology of the Avon-Heathcote Estuary (University of Canterbury, 1978).

  • Wotherspoon, L. M., Pender, M. J. & Orense, R. P. Relationship between observed liquefaction at Kaiapoi following the 2010 Darfield earthquake and former channels of the Waimakariri River. Eng. Geol. 125, 45–55 (2012).

    Article 

    Google Scholar 

  • Zhu, J. et al. A geospatial liquefaction model for rapid response and loss estimation. Earthq. Spectra 31, 1813–1837 (2015).

    Article 

    Google Scholar 

  • Pradel, D., Wartman, J. & Tiwari, B. Impact of anthropogenic changes on liquefaction along the Tone River during the 2011 Tohoku earthquake. Nat. Hazards Rev. 15, 13–26 (2014).

    Article 

    Google Scholar 

  • Seed, R. B., Dickenson, S. E. & Idriss, I. M. Principal geotechnical aspects of the 1989 Loma Prieta earthquake. Soils Found. 31, 1–26 (1991).

    Article 

    Google Scholar 

  • Cruz-Atienza, V. M. et al. Long duration of ground motion in the paradigmatic Valley of Mexico. Sci. Rep. 6, 38807 (2016).

    Article 
    CAS 

    Google Scholar 

  • Tena-Colunga, A., Hernández-Ramírez, H., Godínez-Domínguez, E. A. & Pérez-Rocha, L. E. Mexico City during and after the September 19, 2017 earthquake: assessment of seismic resilience and ongoing recovery process. J. Civ. Struct. Health Monit. 11, 1275–1299 (2021).

    Article 
    CAS 

    Google Scholar 

  • Díaz del Castillo, B. Historia Verdadera de La Conquista de La Nueva España edn Serés, G. (1632); https://www.rae.es/sites/default/files/Aparato_de_variantes_Historia_verdadera_de_la_conquista_de_la_Nueva_Espana.pdf.

  • Yasuhara, K., Murakami, S., Mimura, N., Komine, H. & Recio, J. Influence of global warming on coastal infrastructural instability. Sustain. Sci. 2, 13–25 (2007).

    Article 

    Google Scholar 

  • Monk, C. B., Van Ballegooy, S., Hughes, M. & Villeneuve, M. Liquefaction vulnerability increase at North New Brighton due to subsidence, sea level rise and reduction in thickness of the non-liquefying layer. Bull. N. Z. Soc. Earthq. Eng. 49, 334–340 (2016).

    Google Scholar 

  • Li, P., Tian, Z., Bo, J., Zhu, S. & Li, Y. Study on sand liquefaction induced by Songyuan earthquake with a magnitude of M5.7 in China. Sci. Rep. 12, 9588 (2022).

    Article 
    CAS 

    Google Scholar 

  • Barker, R. & Molle, F. Evolution of Irrigation in South and Southeast Asia. Comprehensive Assessment Research Report 5 (International Water Management Institute, 2004).

  • Li, K. & Xu, Z. Overview of Dujiangyan Irrigation Scheme of ancient China with current theory. Irrig. Drain. 55, 291–298 (2006).

    Article 

    Google Scholar 

  • Liu-Zeng, J. et al. Liquefaction in western Sichuan Basin during the 2008 Mw 7.9 Wenchuan earthquake, China. Tectonophysics 694, 214–238 (2017).

    Article 

    Google Scholar 

  • Wang, C., Cheng, L.-H., Chin, C.-V. & Yu, S.-B. Coseismic hydrologic response of an alluvial fan to the 1999 Chi-Chi earthquake. Taiwan. Geol. 29, 831 (2001).

    Article 

    Google Scholar 

  • Parthasarathi, T., Vanitha, K., Mohandass, S. & Vered, E. Evaluation of drip irrigation system for water productivity and yield of rice. Agron. J. 110, 2378–2389 (2018).

    Article 
    CAS 

    Google Scholar 

  • He, J., Ma, B. & Tian, J. Water production function and optimal irrigation schedule for rice (Oryza sativa L.) cultivation with drip irrigation under plastic film-mulched. Sci. Rep. 12, 17243 (2022).

    Article 
    CAS 

    Google Scholar 

  • Carrijo, D. R., Lundy, M. E. & Linquist, B. A. Rice yields and water use under alternate wetting and drying irrigation: a meta-analysis. Field Crop. Res. 203, 173–180 (2017).

    Article 

    Google Scholar 

  • Lansing, J. S. et al. Adaptive irrigation management by Balinese farmers reduces greenhouse gas emissions and increases rice yields. Philos. Trans. R. Soc. B Biol. Sci. 378, 20220400 (2023).

    Article 
    CAS 

    Google Scholar 

  • McCaughey, J. W., Daly, P., Mundir, I., Mahdi, S. & Patt, A. Socio-economic consequences of post-disaster reconstruction in hazard-exposed areas. Nat. Sustain. 1, 38–43 (2018).

    Article 

    Google Scholar 

  • Boret, S. P. & Gerster, J. Social lives of tsunami walls in Japan: concrete culture, social innovation and coastal communities. IOP Conf. Ser. Earth Environ. Sci. 630, 012029 (2021).

    Article 

    Google Scholar 

  • Cochard, R. et al. The 2004 tsunami in Aceh and southern Thailand: a review on coastal ecosystems, wave hazards and vulnerability. Perspect. Plant. Ecol. Evol. Syst. 10, 3–40 (2008).

    Article 

    Google Scholar 

  • Richards, D. R. & Friess, D. A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl Acad. Sci. USA 113, 344–349 (2016).

    Article 
    CAS 

    Google Scholar 

  • Valiela, I., Bowen, J. L. & York, J. K. Mangrove forests: one of the world’s threatened major tropical environments. BioScience 51, 807 (2001).

    Article 

    Google Scholar 

  • Ilman, M., Dargusch, P., Dart, P. & Onrizal A historical analysis of the drivers of loss and degradation of Indonesia’s mangroves. Land Use Policy 54, 448–459 (2016).

    Article 

    Google Scholar 

  • Eddy, T. D. et al. Global decline in capacity of coral reefs to provide ecosystem services. One Earth 4, 1278–1285 (2021).

    Article 

    Google Scholar 

  • Massel, S. R., Furukawa, K. & Brinkman, R. M. Surface wave propagation in mangrove forests. Fluid Dyn. Res. 24, 219–249 (1999).

    Article 

    Google Scholar 

  • Kerr, A. M., Baird, A. H. & Campbell, S. J. Comments on “Coastal mangrove forests mitigated tsunami” by K. Kathiresan and N. Rajendran [Estuar. Coast. Shelf Sci. 65 (2005) 601e606]. Estuar. Coast. Shelf Sci. 67, 539–541 (2006).

  • Tanaka, N. Vegetation bioshields for tsunami mitigation: review of effectiveness, limitations, construction, and sustainable management. Landsc. Ecol. Eng. 5, 71–79 (2009).

    Article 

    Google Scholar 

  • Mukherjee, A. et al. Forest density is more effective than tree rigidity at reducing the onshore energy flux of tsunamis. Coast. Eng. 182, 104286 (2023).

    Article 

    Google Scholar 

  • McAdoo, B. G. et al. Coral reefs as buffers during the 2009 South Pacific tsunami, Upolu Island, Samoa. Earth-Sci. Rev. 107, 147–155 (2011).

    Article 

    Google Scholar 

  • Dengler, L. & Preuss, J. Mitigation lessons from the July 17, 1998 Papua New Guinea Tsunami. Pure Appl. Geophys. 160, 2001–2031 (2003).

    Article 

    Google Scholar 

  • Kunkel, C. M., Hallberg, R. W. & Oppenheimer, M. Coral reefs reduce tsunami impact in model simulations. Geophys. Res. Lett. 33, L23612 (2006).

    Article 

    Google Scholar 

  • Borrero, J. C., Synolakis, C. E. & Fritz, H. Northern sumatra field survey after the December 2004 great Sumatra earthquake and Indian Ocean tsunami. Earthq. Spectra 22, 93–104 (2006).

    Article 

    Google Scholar 

  • Dahdouh-Guebas, F. et al. How effective were mangroves as a defence against the recent tsunami? Curr. Biol. 15, R443–R447 (2005).

    Article 
    CAS 

    Google Scholar 

  • Danielsen, F. et al. The Asian tsunami: a protective role for coastal vegetation. Science 310, 643 (2005).

    Article 
    CAS 

    Google Scholar 

  • Chatenoux, B. & Peduzzi, P. Impacts from the 2004 Indian Ocean tsunami: analysing the potential protecting role of environmental features. Nat. Hazards 40, 289–304 (2007).

    Article 

    Google Scholar 

  • Laso Bayas, J. C. et al. Influence of coastal vegetation on the 2004 tsunami wave impact in West Aceh. Proc. Natl Acad. Sci. USA 108, 18612–18617 (2011).

    Article 

    Google Scholar 

  • Macreadie, P. I. et al. Blue carbon as a natural climate solution. Nat. Rev. Earth Environ. 2, 826–839 (2021).

    Article 
    CAS 

    Google Scholar 

  • Lunghino, B. et al. The protective benefits of tsunami mitigation parks and ramifications for their strategic design. Proc. Natl Acad. Sci. USA 117, 10740–10745 (2020).

    Article 
    CAS 

    Google Scholar 

  • Sim, S. Y., Huang, Z. & Switzer, A. D. An experimental study on tsunami inundation over complex coastal topography. Theor. Appl. Mech. Lett. 3, 032006 (2013).

    Article 

    Google Scholar 

  • Synolakis, C. E. & Kong, L. Runup measurements of the December 2004 Indian Ocean tsunami. Earthq. Spectra 22, 67–91 (2006).

    Article 

    Google Scholar 

  • Parsons, T., Wu, P., Wei, M. (M.). & D’Hondt, S. The weight of New York City: possible contributions to subsidence from anthropogenic sources. Earths Future 11, e2022EF003465 (2023).

    Article 

    Google Scholar 

  • Tay, C. et al. Sea-level rise from land subsidence in major coastal cities. Nat. Sustain. 5, 1049–1057 (2022).

    Article 

    Google Scholar 

  • Sieh, K. et al. Earthquake supercycles inferred from sea-level changes recorded in the corals of West Sumatra. Science 322, 1674–1678 (2008).

    Article 
    CAS 

    Google Scholar 

  • Hayashi, S., Kubo, K. & Nakase, A. Damage to harbour structures by the Niigata earthquake. Soils Found. 6, 89–112 (1966).

    Article 

    Google Scholar 

  • Kawasumi, H. General Report on the Niigata Earthquake of 1964 (Tokyo Electrical Engineering College Press, 1968).

  • Nishimura, T., Munekane, H. & Yarai, H. The 2011 off the Pacific coast of Tohoku earthquake and its aftershocks observed by GEONET. Earth Planets Space 63, 631–363 (2011).

    Article 

    Google Scholar 

  • Satirapod, C., Trisirisatayawong, I., Fleitout, L., Garaud, J. D. & Simons, W. J. F. Vertical motions in Thailand after the 2004 Sumatra–Andaman earthquake from GPS observations and its geophysical modelling. Adv. Space Res. 51, 1565–1571 (2013).

    Article 

    Google Scholar 

  • Hughes, M. W. The sinking city: earthquakes increase flood hazard in Christchurch, New Zealand. GSA Today https://doi.org/10.1130/GSATG221A.1 (2015).

  • Feagin, R. A. et al. Shelter from the storm? Use and misuse of coastal vegetation bioshields for managing natural disasters. Conserv. Lett. 3, 1–11 (2010).

    Article 

    Google Scholar 

  • Berkes, F. Indigenous ways of knowing and the study of environmental change. J. R. Soc. N. Z. 39, 151–156 (2009).

    Article 

    Google Scholar 

  • Usher, P. J. Traditional ecological knowledge in environmental assessment and management. ARCTIC 53, 183–193 (2000).

    Article 

    Google Scholar 

  • Whyte, K. P. On the role of traditional ecological knowledge as a collaborative concept: a philosophical study. Ecol. Process. 2, 7 (2013).

    Article 

    Google Scholar 

  • Berkes, F. Understanding uncertainty and reducing vulnerability: lessons from resilience thinking. Nat. Hazards 41, 283–295 (2007).

    Article 

    Google Scholar 

  • Khalafzai, M. A. K. in Natural Hazards — New Insights (ed Mokhtari, M.) (IntechOpen, 2023).

  • Tarter, A. M., Freeman, K. K. & Sander, K. A History of Landscape-Level Land Management Efforts in Haiti (World Bank, 2016).

  • Kurnio, H., Fekete, A., Naz, F., Norf, C. & Jüpner, R. Resilience learning and indigenous knowledge of earthquake risk in Indonesia. Int. J. Disaster Risk Reduct. 62, 102423 (2021).

    Article 

    Google Scholar 

  • UN/ISDR. Indigenous Knowledge for Disaster Risk Reduction: Good Practices and Lessons Learned from Experiences in the Asia-Pacific Region (eds Shaw, R., Uy, N. & Baumwoll, J.) (UN/ISDR, 2008).

  • Hou, L. & Shi, P. Haiti 2010 earthquake — how to explain such huge losses? Int. J. Disaster Risk Sci. 2, 25–33 (2011).

    Article 

    Google Scholar 

  • World Bank. What Did We Learn? The Shelter Response and Housing Recovery in the First Two Years after the 2010 Haiti Earthquake (World Bank, 2016); https://doi.org/10.1596/26729.

  • Havenith, H.-B. et al. Earthquake-induced landslides in Haiti: analysis of seismotectonic and possible climatic influences. Nat. Hazards Earth Syst. Sci. 22, 3361–3384 (2022).

    Article 

    Google Scholar 

  • Poupardin, A. et al. Deep submarine landslide contribution to the 2010 Haiti earthquake tsunami. Nat. Hazards Earth Syst. Sci. 20, 2055–2065 (2020).

    Article 

    Google Scholar 

  • Farmer, P. Haiti after the Earthquake (PublicAffairs, 2012).

  • Dubois, L. Haiti: the Aftershocks of History (Picador, 2013).

  • Katz, J. The Big Truck That Went by: How the World Came to Save Haiti and Left Behind a Disaster (St. Martin’s Griffin, 2014).

  • UNU-EHS. Interconnected Disaster Risks (UNU-EHS, 2022).

  • Churches, C. E., Wampler, P. J., Sun, W. & Smith, A. J. Evaluation of forest cover estimates for Haiti using supervised classification of Landsat data. Int. J. Appl. Earth Obs. Geoinf. 30, 203–216 (2014).

    Google Scholar 

  • Audefroy, J. F. Haiti: post-earthquake lessons learned from traditional construction. Environ. Urban. 23, 447–462 (2011).

    Article 

    Google Scholar 

  • Mason, H. B. et al. East Palu Valley flowslides induced by the 2018 M 7.5 Palu-Donggala earthquake. Geomorphology 373, 107482 (2021).

    Article 

    Google Scholar 

  • Pelinovsky, E., Yuliadi, D., Prasetya, G. & Hidayat, R. The 1996 Sulawesi tsunami. Nat. Hazards 16, 29–38 (1996).

    Article 

    Google Scholar 

  • Martin, S. S., Cummins, P. R. & Meltzner, A. J. Gempa Nusantara: a database of 7380 macroseismic observations for 1200 historical earthquakes in Indonesia from 1546 to 1950. Bull. Seismol. Soc. Am. 112, 2958–2980 (2022).

    Article 

    Google Scholar 

  • Paulik, R. et al. Tsunami hazard and built environment damage observations from Palu City after the September 28 2018 Sulawesi earthquake and tsunami. Pure Appl. Geophys. 176, 3305–3321 (2019).

    Article 

    Google Scholar 

  • Syamsidik, B., Umar, M., Margaglio, G. & Fitrayansyah, A. Post-tsunami survey of the 28 September 2018 tsunami near Palu Bay in Central Sulawesi, Indonesia: impacts and challenges to coastal communities. Int. J. Disaster Risk Reduct. 38, 101229 (2019).

    Article 

    Google Scholar 

  • Omira, R. et al. The September 28th, 2018, tsunami in Palu-Sulawesi, Indonesia: a post-event field survey. Pure Appl. Geophys. 176, 1379–1395 (2019).

    Article 

    Google Scholar 

  • Wanger, T. C. et al. Ecosystem-based tsunami mitigation for tropical biodiversity hotspots. Trends Ecol. Evol. 35, 96–100 (2020).

    Article 

    Google Scholar 

  • Liu, P. L.-F. et al. Coastal landslides in Palu Bay during 2018 Sulawesi earthquake and tsunami. Landslides 17, 2085–2098 (2020).

    Article 

    Google Scholar 

  • Weber, R., Kreisel, W. & Faust, H. Colonial interventions on the cultural landscape of Central Sulawesi by ‘ethical policy’: the impact of the Dutch rule in Palu and Kulawi Valley, 1905–1942. Asian J. Soc. Sci. 31, 398–434 (2003).

    Article 

    Google Scholar 

  • Tunas, I. G., Tanga, A. & Oktavia, S. Impact of landslides induced by the 2018 Palu earthquake on flash flood in Bangga River Basin, Sulawesi, Indonesia. J. Ecol. Eng. 21, 190–200 (2020).

    Article 

    Google Scholar 

  • Cummins, P. R. Irrigation and the Palu landslides. Nat. Geosci. 12, 881–882 (2019).

    Article 
    CAS 

    Google Scholar 

  • Soloviev, S. L. & Go, C. N. Catalogue of Tsunamis on the Western Shore of the Pacific Ocean (Nauka, 1974).

  • Share this article